
  

Mathematical Induction
Part Two



  

Outline for Today

● Variations on Induction
● Starting later, taking different step sizes, and 

more!
● “Build Up” versus “Build Down”

● An inductive nuance that follows from our 
general proofwriting principles.

● Complete Induction
● When one assumption isn’t enough!



  

Recap from Last Time



  

Let P be some predicate. The principle of mathematical 
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts true…
…and it stays 

true…

…then it's always 
true.



  

Theorem: The sum of the first n powers of two is 2n – 1.
 

Proof: Let P(n) be the statement “the sum of the first n
powers of two is 2n – 1.” We will prove, by induction, that
P(n) is true for all n ∈ ℕ, from which the theorem follows.

 

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 20 – 1. Since
the sum of the first zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

 

For the inductive step, assume that for some arbitrary
k ∈ ℕ that P(k) holds, meaning that

 

20 + 21 + … + 2k-1 = 2k – 1. (1)
 

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k+1 – 1. To see this,
notice that

 

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))
= 2(2k) – 1
= 2k+1 – 1.

 

Therefore, P(k + 1) is true, completing the induction. ■
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New Stuff!



  

Variations on Induction: Starting Later



  

Induction Starting at 0

● To prove that P(n) is true for all natural 
numbers greater than or equal to 0: 
● Show that P(0) is true. 
● Show that for any k ≥ 0, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to 0. 



  

Induction Starting at m

● To prove that P(n) is true for all natural 
numbers greater than or equal to m: 
● Show that P(m) is true. 
● Show that for any k ≥ m, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to m. 



  

Variations on Induction: Bigger Steps



  

Subdividing a Square
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Subdividing a Square



  

Subdividing a Square



  

Subdividing a Square

These regions aren’t 
squares.



  

Subdividing a Square

Squares can’t overlap 
or hang off the figure.



  

1   2   3   4   5   6   7   8   9   10   11   12

For what values of n can a square be 
subdivided into n squares?

Give it a try! Enter your guess as a list of values.  

Respond at pollev.com/zhenglian740
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1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.



  

1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.

# corners: 4

# squares: <4



  

1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.

By the pigeonhole 
principle, at least 
one smaller square 
needs to cover at 
least two of the 
original square’s 
corners.



  

1   2   3   4   5   6   7   8   9   10   11   12



  

1   2   3   4   5   6   7   8   9   10   11   12

1 2

34



  

1   2   3   4   5   6   7   8   9   10   11   12



  

1   2   3   4   5   6   7   8   9   10   11   12

# corners: 4

# squares: 5



  

1   2   3   4   5   6   7   8   9   10   11   12

# corners: 4

# squares: 5

At least one square 
cannot be covering 
any of the original 
corners
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An Insight
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An Insight

● If we can subdivide a square into n squares, we 
can also subdivide it into n + 3 squares.

● Since we can subdivide a bigger square into 6, 7, 
and 8 squares, we can subdivide a square into n 
squares for any n ≥ 6:

● For multiples of three, start with 6 and keep adding 
three squares until n is reached.

● For numbers congruent to one modulo three, start 
with 7 and keep adding three squares until n is 
reached.

● For numbers congruent to two modulo three, start 
with 8 and keep adding three squares until n is 
reached.



  

Theorem: For any n ≥ 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n ≥ 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

 
For the inductive step, assume that for some arbitrary k ≥ 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction. ■
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Generalizing Induction
● When doing a proof by induction,

● feel free to use multiple base cases, and
● feel free to take steps of sizes other than one.

● If you do, make sure that…
● … you actually need all your base cases. Avoid redundant 

base cases that are already covered by a mix of other base 
cases and your inductive step.

● … you cover all the numbers you need to cover. Trace out 
your reasoning and make sure all the numbers you need 
to cover really are covered.

● As with a proof by cases, you don’t need to 
separately prove you’ve covered all the options. We 
trust you. 😃



  

More on Square Subdivisions

● There are a ton of interesting questions 
that come up when trying to subdivide a 
rectangle or square into smaller squares.

● In fact, one of the major players in early 
graph theory (William Tutte) got his start 
playing around with these problems.

● Good starting resource: this Numberphile 
video on Squaring the Square.

https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be


  

Ramsey Revisited



  

Ramsey Revisited

● In lecture, we proved the Theorem on 
Friends and Strangers: any 6-clique whose 
edges are painted one of two colors 
contains a monochrome triangle.

● On PS4, you’re proving that any 17-clique 
whose edges are painted one of three colors 
has a monochrome triangle.

● What about if you use four colors? Five 
colors? Six colors?



  

Refresher on Friends and 
Strangers



  



  



  

If we pick any node in the 
graph, that node will have at 
least ⌈5/2⌉ = 3 edges of the 

same color incident to it.



  



  



  



  



  



  



  



  



  

Theorem: If n ≥ 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.

Proof: Let P(n) be the statement “for all ways of coloring a 3n!-clique’s edges
n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n ≥ 1, from which the theorem follows.

As a base case, we prove P(1), that for any way of painting the edges of a
3-clique using one color, we can find a triangle. A 3-clique is a triangle, and
since its edges were all painted the same color it’s a monochrome triangle.

Next, pick a natural number k ≥ 1 and assume P(k) is true, that any coloring
of the edges of a 3k!-clique with k colors has a monochrome triangle. We
need to show P(k+1) is true. To do so, pick a coloring of the edges of a
3(k+1)!-clique with k+1 colors. We need to find a monochrome triangle.

Pick any node v in the clique and look at the edges incident to v. There are
3(k+1)! - 1 other nodes in the clique and k+1 colors. By the generalized
pigeonhole principle, this means v is adjacent to at least

 
nodes by edges of the same color. Assume WLOG that color is blue. If
among those nodes is a blue edge {r, s}, then v, r, s, v forms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. ■ 
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colors. We then have a 3k!-clique whose edges are colored using k colors, so
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The notation n! represents n factorial, 
the product of all natural numbers 

between 1 and n, inclusive.

5! = 1 × 2 × 3 × 4 × 5.

The value 3n! is read as 3(n!).
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Based on this choice of P(n), what are we 
trying to prove in the base case? 

Respond at pollev.com/zhenglian740



  

Theorem: If n ≥ 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.

Proof: Let P(n) be the statement “for all ways of coloring a 3n!-clique’s edges
n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n ≥ 1, from which the theorem follows.

As a base case, we prove P(1). So pick a 3-clique and color its edges with
one color; we need to show it contains a monochrome triangle. But the
3-clique itself is a monochrome triangle, so P(1) holds.

Next, pick a natural number k ≥ 1 and assume P(k) is true, that any coloring
of the edges of a 3k!-clique with k colors has a monochrome triangle. We
need to show P(k+1) is true. To do so, pick a coloring of the edges of a
3(k+1)!-clique with k+1 colors. We need to find a monochrome triangle.

Pick any node v in the clique and look at the edges incident to v. There are
3(k+1)! - 1 other nodes in the clique and k+1 colors. By the generalized
pigeonhole principle, this means v is adjacent to at least

 
nodes by edges of the same color. Assume WLOG that color is blue. If
among those nodes is a blue edge {r, s}, then v, r, s, v forms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. ■ 



  

Theorem: If n ≥ 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.

Proof: Let P(n) be the statement “for all ways of coloring a 3n!-clique’s edges
n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n ≥ 1, from which the theorem follows.

As a base case, we prove P(1). So pick a 3-clique and color its edges with
one color; we need to show it contains a monochrome triangle. But the
3-clique itself is a monochrome triangle, so P(1) holds.

Next, pick a natural number k ≥ 1 and assume P(k) is true, that any coloring
of the edges of a 3k!-clique with k colors has a monochrome triangle. We
need to show P(k+1) is true. To do so, pick a coloring of the edges of a
3(k+1)!-clique with k+1 colors. We need to find a monochrome triangle.

Pick any node v in the clique and look at the edges incident to v. There are
3(k+1)! - 1 other nodes in the clique and k+1 colors. By the generalized
pigeonhole principle, this means v is adjacent to at least

 
nodes by edges of the same color. Assume WLOG that color is blue. If
among those nodes is a blue edge {r, s}, then v, r, s, v forms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. ■ 



  

Theorem: If n ≥ 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.

Proof: Let P(n) be the statement “for all ways of coloring a 3n!-clique’s edges
n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n ≥ 1, from which the theorem follows.

As a base case, we prove P(1). So pick a 3-clique and color its edges with
one color; we need to show it contains a monochrome triangle. But the
3-clique itself is a monochrome triangle, so P(1) holds.

Next, pick a natural number k ≥ 1 and assume P(k) is true, that any coloring
of the edges of a 3k!-clique with k colors has a monochrome triangle. We
need to show P(k+1) is true. To do so, pick a coloring of the edges of a
3(k+1)!-clique with k+1 colors. We need to find a monochrome triangle.

Pick any node v in the clique and look at the edges incident to v. There are
3(k+1)! - 1 other nodes in the clique and k+1 colors. By the generalized
pigeonhole principle, this means v is adjacent to at least

 
nodes by edges of the same color. Assume WLOG that color is blue. If
among those nodes is a blue edge {r, s}, then v, r, s, v forms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. ■ 



  

Theorem: If n ≥ 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.

Proof: Let P(n) be the statement “for all ways of coloring a 3n!-clique’s edges
n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n ≥ 1, from which the theorem follows.

As a base case, we prove P(1). So pick a 3-clique and color its edges with
one color; we need to show it contains a monochrome triangle. But the
3-clique itself is a monochrome triangle, so P(1) holds.

Next, pick a natural number k ≥ 1 and assume P(k) is true, that any coloring
of the edges of a 3k!-clique with k colors has a monochrome triangle. We
need to show P(k+1) is true. To do so, pick a coloring of the edges of a
3(k+1)!-clique with k+1 colors. We need to find a monochrome triangle.

Pick any node v in the clique and look at the edges incident to v. There are
3(k+1)! - 1 other nodes in the clique and k+1 colors. By the generalized
pigeonhole principle, this means v is adjacent to at least

 
nodes by edges of the same color. Assume WLOG that color is blue. If
among those nodes is a blue edge {r, s}, then v, r, s, v forms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. ■ 

Based on this choice of P(n), what are we 
assuming in the inductive step? 
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To prove P(k+1), what should we do? 

A) Pick a 3k!-clique with edges colored using k colors, apply the 
inductive hypothesis, then add in nodes to create a larger 3(k+1)!-clique.
B) Pick a 3(k+1)!-clique with edges colored using k+1 colors, then 
discover a smaller 3k!-clique within that larger clique to apply the 
inductive hypothesis to.
C) Both options work.
D) Neither option works. 
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How many edges have an endpoint at this 
node?

How many possible edge colors do we 
have?
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colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
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Now let’s look at these nodes that are 
adjacent to our chosen node via a blue 

edge. How do they relate to one another?



  

Theorem: If n ≥ 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.
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n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n ≥ 1, from which the theorem follows.

As a base case, we prove P(1). So pick a 3-clique and color its edges with
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among those nodes is a blue edge {r, s}, then v, r, s, v forms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. ■ 

Note: I’m coloring these edges in grey to 
indicate that we don’t know how these edges 

are colored, just that it’s some arbitrary coloring 
from the k+1 possible colors.



  

Theorem: If n ≥ 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.
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n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n ≥ 1, from which the theorem follows.

As a base case, we prove P(1). So pick a 3-clique and color its edges with
one color; we need to show it contains a monochrome triangle. But the
3-clique itself is a monochrome triangle, so P(1) holds.

Next, pick a natural number k ≥ 1 and assume P(k) is true, that any coloring
of the edges of a 3k!-clique with k colors has a monochrome triangle. We
need to show P(k+1) is true. To do so, pick a coloring of the edges of a
3(k+1)!-clique with k+1 colors. We need to find a monochrome triangle.

Pick any node v in the clique and look at the edges incident to v. There are
3(k+1)! - 1 other nodes in the clique and k+1 colors. By the generalized
pigeonhole principle, this means v is adjacent to at least

 
nodes by edges of the same color. Assume WLOG that color is blue. If
among those nodes is a blue edge {r, s}, then v, r, s, v forms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. ■ 

Observation: if any one of these edges is 
blue, then we’ve found a blue triangle and 

we’re done. 
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So let’s suppose that none of these edges 
are blue. What happens in that case? 
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Hey look, it’s a clique! How many nodes 
does it have? How many possible colors 
are there for the edges? What does our 

inductive hypothesis say about cliques of 
that size?
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k+1 ⌉ = 3k!
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An Observation



  

Start with 
larger clique

Get to smaller 
clique

Start with
fewer squares

Get to more 
squares



  

Following the Rules

● When working with square subdivisions, our 
predicate looked like this:

P(n) is “there exists a way to subdivide
a square into n squares.”

● When working with cliques, our predicate looked 
like this:

P(n) is “for any coloring of a 3n!-clique,
there is a monochrome triangle.”

● With squares, the quantifier is ∃. With cliques, the 
first quantifier is ∀.

● This fundamentally changes the “feel” of induction.



  

Build Up with ∃

● In the case of squares, in our inductive step, we prove

If

    there exists a subdivision into k squares,

then

    there exists a subdivision into k+3 squares.

● Assuming the antecedent gives us a concrete subdivision 
into k squares.

● Proving the consequent means finding some way to 
subdivide in to k+3 squares.

● The inductive step goal is to “build up:” start with a smaller 
number of squares, and somehow work out what to do to get 
a larger number of squares.



  

Build Down with ∀

● In the case of cliques, in our inductive step, we prove

If

    for all colorings of a 3k!-clique, there’s a mono. tri.

then

    for all colorings of a 3(k+1)!-clique, there’s a mono. tri.

● Assuming the antecedent means once we find a k-colored 
3k!-clique, we get a monochrome triangle.

● Proving the consequent means picking an arbitrary coloring 
of a 3(k+1)!-clique, then trying to find a triangle in it.

● The inductive step goal is to “build down:” start with a 
larger clique, then find a way to turn it into a smaller clique.



  

More on Ramsey Triangles

● We’ve proved that 3n! nodes is enough to get a triangle 
with n ≥ 1 colors on the edges.

● For n = 3, this says we need 18 nodes, on PS4 you’ll prove 
that you can do this with just 17 nodes.

● For n = 4, this says we need 72 nodes. We know that 50 
nodes is too few and 66 nodes is enough. The actual 
answer is therefore somewhere between 51 and 66.

● Open problem: Find the exact minimum number of nodes 
needed to get a monochrome triangle with n ≥ 4 colors.

● Challenge problem: Show that ⌈e · n!⌉ nodes is always 
sufficient to get a monochrome triangle with n ≥ 1 colors. 
(This is hard but doable if you know the material from 
CS103, plus the Taylor series for e.)



  

Let’s take a quick break!



  

Time-Out for Announcements!



  

Problem Set Two Graded
● Your diligent and hardworking TAs have finished grading PS2. 

Grades and feedback are now available on Gradescope.

● As always, please review your feedback! Knowing where to 
improve is more important than just seeing a raw score.

● Did we make a mistake? Regrades are open and are due by next 
Thursday.

75th Percentile: 70/76

50th Percentile: 66/76

25th Percentile: 62/76



  

Problem Sets

● Problem Set Three was due today at 
5:30PM.

● Problem Set Four goes out today. It’s due 
next Friday at 5:30PM.
● Because this coincides with the day of the 

midterm, we are implementing the following 
policy: 
– On-time submissions will receive a small bonus 

(5%). 
– There is a penalty-free 48 hour grace period to 

submit until Sunday at 5:30PM. 
– This policy applies for this assignment only.



  

Midterm Exam Logistics

● Our midterm exam will be on Friday, July 26th from 
5:00 – 8:00 PM in Hewlett 201 (our normal lecture 
room).

● You’re responsible for lectures up to the end of 
week 3 and topics from PS1 – PS3. Later lectures 
and problem sets won’t be tested here. Exam 
problems may build on the written or coding 
components from the problem sets.

● The exam is open-book, open-note, and closed-
other-humans/AI.



  

Midterm Accommodations

● This is your last call for midterm accommodations:

● If you have OAE accommodations, you should 
have received an email from us with exam time 
and location. 

● If you have a midterm conflict, you should have 
received an email from us with instructions on 
how you will be taking the exam.

● If you fall into either of these categories but have 
not heard from us, email the course staff ASAP at 
cs103-sum2324-staff@lists.stanford.edu. 

mailto:cs103-sum2324-staff@lists.stanford.edu


  

Preparing for the Exam

● Review your assignment feedback and the 
solutions and make sure you understand our 
comments.

● Practice Midterm 1 – slightly easier than our 
exam.

● Practice Midterm 2 – approximately the same 
difficulty as our exam.

● 30 Extra Practice Problems across all topics. 
● Please do not read the solutions to a problem 

until you have worked through it.



  

Let’s get back to CS103!



  

Complete Induction



  

Let P be some predicate. The principle of complete 
induction states that if

P(0) is true

and

for all k ∈ ℕ, if P(0), …, and P(k) are true,
then P(k+1) is true

then

∀n ∈ ℕ. P(n)

If it starts true…
…and it stays 

true…

…then it's always 
true.



  

Mathematical Induction

● You can write proofs using the principle 
of mathematical induction as follows: 
● Define some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that

P(k) is true. 
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

Complete Induction

● You can write proofs using the principle 
of complete induction as follows:
● Define some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that 

P(0), P(1), P(2), …, and P(k) are all true.
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

An Example: Eating a Chocolate Bar



  



  



  



  

Eating a Chocolate Bar

● You have a 1 × n chocolate bar subdivided 
into 1 × 1 squares.

● You eat the chocolate bar from left to right 
by breaking off one or more squares and 
eating them in one (possibly enormous) bite.

● How many ways can you eat a…
● 1 × 1 chocolate bar?
● 1 × 2 chocolate bar?
● 1 × 3 chocolate bar?
● 1 × 4 chocolate bar?



  There are eight ways to eat a 1 × 4 chocolate bar.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat one piece first, you 
then eat the remaining 1 × 3 
chocolate bar any way you’d 

like.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat two pieces first, you 
then eat the remaining 1 × 2 
chocolate bar any way you’d 

like.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat three pieces first, 
you then eat the remaining 1 × 
1 chocolate bar any way you’d 

like.



  There are eight ways to eat a 1 × 4 chocolate bar.

Or you could eat the whole 
chocolate bar at once. Ah, 

gluttony. 😃



  

Eating a Chocolate Bar

● There’s…
● 1 way to eat a 1 × 1 chocolate bar,
● 2 ways to eat a 1 × 2 chocolate bar,
● 4 ways to eat a 1 × 3 chocolate bar, and
● 8 ways to eat a 1 × 4 chocolate bar.

● Our guess: There are 2n – 1 ways to eat a 1 × n 
chocolate bar for any natural number n ≥ 1.

● And we think it has something to do with this insight: 
we eat the bar either by
● eating the whole thing in one bite, or
● eating some piece of size k, then eating the remaining n – k 

pieces however we’d like.
● Let’s formalize this!



  

Theorem: For any natural number n ≥ 1, there are exactly 2n – 1 ways to eat a
1 × n chocolate bar from left to right.

Proof: Let P(n) be the statement “there are exactly 2n – 1 ways to eat a 1 × n
chocolate bar from left to right.” We will prove by induction that P(n)
holds for all natural numbers n ≥ 1, from which the theorem follows.

As our base case, we prove P(1), that there is exactly 21 – 1 = 1 way to eat a
1 × 1 chocolate bar from left to right. The only option here is to eat the
entire chocolate bar at once, so there’s just one way to eat it, as needed.

For our inductive step, assume for some arbitrary natural number k ≥ 1 
that P(1), …, and P(k) are true. We need to show P(k+1) is true, that there
are exactly 2k ways to eat a 1 × (k+1) chocolate bar.

There are two options for how to eat the bar. First, we can eat the whole
chocolate bar in one bite. Second, we could eat a piece of size r for some
1 ≤ r ≤ k, leaving a chocolate bar of size k+1–r, then eat that chocolate
bar from left to right. Since 1 ≤ r ≤ k, we know that 1 ≤ k+1–r ≤ k, so by
our inductive hypothesis there are 2k – r ways to eat the remainder.

Summing up this first option, plus all choices of r for the second option,
we see that the number of ways to eat the chocolate bar is

1 + 2k-1 + 2k-2 + … + 22 + 21 + 20    =    1 + 2k – 1    =    2k.

Thus P(k+1) holds, completing the induction. ■
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Thus P(k+1) holds, completing the induction. ■
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More on Chocolate Bars

● Imagine you have an m × n chocolate bar. 
Whenever you eat a square, you have to eat all 
squares above it and to the left.

● How many ways are there to eat the chocolate bar? 

 

 

 

● Open Problem: Find a non-recursive exact formula 
for this number, or give an approximation whose 
error drops to zero as m and n tend toward infinity.



  

Induction vs. Complete Induction

I can solve
smaller versions
of the problem

I can solve
bigger versions
of the problem



  

Induction vs. Complete Induction

Regular
Induction

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction

Regular induction is great 
when you know exactly how 
much smaller your “smaller” 

problem instance is.



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction

Complete induction is great 
when you know things get 

smaller, but you’re not sure by 
how much.



  

An Important Milestone



  

Recap: Discrete Mathematics

● The past four weeks have focused exclusively 
on discrete mathematics:

Induction    Functions

Graphs      The Pigeonhole Principle

Formal Proofs   Mathematical Logic

Set Theory   
● These are building blocks we will use 

throughout the rest of the quarter.
● These are building blocks you will use 

throughout the rest of your CS career.



  

Three Questions

● What is something you know now that, at 
the start of the quarter, you knew you 
didn’t know?

● What is something you know now that, at 
the start of the quarter, you didn’t know 
that you didn’t know?

● What is something you don’t know that, 
at the start of the quarter, you didn’t 
know that you didn’t know?



  

Next Up: Computability Theory

● It's time to switch gears and address the limits 
of what can be computed.

● We'll explore these questions:
● How do we model computation itself?
● What exactly is a computing device?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of 
what computers could ever be made to do.



  

Next Time

● Formal Language Theory
● How are we going to formally model 

computation?
● Finite Automata

● A simple but powerful computing device 
made entirely of math!

● DFAs
● A fundamental building block in computing.
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